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A NEW SOLUTION OF EULER’S EQUATION OF MOTION WITH HELICITY
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Summary On the basis of the principle of least action, a new representation of solution is derived for the velocity field of rotational
flows of a compressible ideal fluid. The velocity field is represented in general by scalar potentials and vector potentials of frozen field,
i.e. the latter potentials is convected with the fluid flow under effect of stretching. It is verified that the system of new expressions in
fact satisfies the Euler’s equation of motion. The Lagrangian for the action consists of main terms of total kinetic energy and internal
energy (with negative sign), together with two terms yielding the equations of continuity and entropy and the third term which yields
a new rotational component of velocity field. This solution gives an explicit expression of non-vanishing helicity, and improves the
classical Clebsch-type solution in the sense that the Clebsch potentials are simply convected by the flow (without stretching effect).

INTRODUCTION

Fluid mechanics is a field theory of Newtonian mechanics of Galilean symmetry. Two symmetries are known as sub-
groups of the Galilean group: translation (space and time) and space-rotation. A symmetry of a physical system means
invariance with respect to a certain group of transformations and plays an essential role in the gauge theory of theoretical
physics. Guided by the gauge theory, Kambe [1, 2] studied rotational flows of an ideal compressible fluid and investi-
gated consequence of both global and local invariances of the fields in the space-time (x, t). Present study is focused on
resolving a difficulty inherent in the traditional Lagrangian formulation.

It is as follows. Under the Eulerian variation in which variations are taken independently for all the field variables
of Eulerian description, the principle of least action yields a general solution equivalent to the classical Clebsch solution
(Clebsch [3], [1]). In this solution the vorticity has a special form such that the helicity vanishes. In a particular case of
isentropic fluid in which the entropy s is uniform, the flow field thus obtained becomes irrotational (see below). This is a
weak point of the traditional formulation, because even in such an isentropic fluid, the fluid flow should support rotational
velocity fields. In addition, most traditional formulations of the action principle take into account both the continuity
equation and isentropic condition as constraint conditions for variations. To do it, Lagrange multipliers are used. This is
a mathematical artifact since physical meaning of the multipliers is not clear.

On the basis of the present gauge-theoretic formulation mentioned above, it is particularly remarkable that the
convective derivative Dt defined by Dt ≡ ∂/∂t+ v · ∇ (the Lagrange derivative) is in fact the covariant derivative which
is a building block of the gauge theory, where v(x, t) is the velocity field, ∇ = (∂i) and ∂i ≡ ∂/∂xi. In the present
formulation, a new term is introduced in the Lagrangian for rotational motion of an ideal fluid.

VARIATIONAL FORMULATION

Total Lagrangian consists of main terms of total kinetic energy and internal energy ϵ (with negative sign), together with
two terms yielding the equations of continuity and entropy and the third term which yields a new rotational component
of velocity field.b) Thus the total Lagrangian L, the action J and the Lagrangian density Λ are defined by

L =

∫
V

Λ(v, ρ, s, ϕ, ψ,A,Ω) d3x , J =

∫ t2

t1

L dt =
∫ ∫

Λ dt d3x, (1)

Λ = 1
2
ρ⟨v,v⟩ − ρϵ(ρ, s)− ρ Ve − ρDtϕ− ρsDtψ − ρ⟨L∗

t [A], Ω⟩, (with, ∇ · (ρΩ) = 0, ∇ ·A = 0 ), (2)

where V is a domain in the x-space (chosen arbitrarily), ⟨·, ·⟩ denotes the inner product, ρ(x, t) and s(x, t) are the
fluid density and specific entropy (per unit mass), and ϕ(x, t) and ψ(x, t) are scalar potentials associated with mass and
entropy respectively. The last term ⟨L∗

t [A], Ω⟩ is new [1]. Its form is determined so as to satisfy the symmetries, i.e.
invariance with respect to translation (space and time) and space-rotation. Lie-derivatives of a tangent vector Ω = (Ωi)
and a cotangent vector A = (Ai) are defined in the footnote c). Substituting the varied variables v+ δv, ρ+ δρ, s+ δs,
ϕ+ δϕ and ψ + δψ into Λ(v, ρ, s, ϕ, ψ) and writing its variation as δΛ, we obtain

δΛ = Λv · δv + Λρ δρ+ Λs δs+ Λϕ δϕ+ Λψ δψ + ΛΩ · δΩ+ ΛA · δA+ ∂t(Λt) + ∂i(Λi), (3)

where p ·q denotes the scalar product of vectors p and q. The action principle is δJ =
∫

dt
∫

d3x δΛ = 0. The variations
δv, δρ, · · · are assumed to vanish on the boundary surface enclosing the domain V and at the end points of t1 and t2,
which make the last two terms ∂t(Λt) + ∂i(Λi) of δΛ vanish. By substituting the above, we must have Λv = 0, Λρ = 0
and Λs = 0 from the action principle for independent variations δv, δρ and δs. Thus we obtain

v = ∇ϕ+ s∇ψ +w, w ≡ Ω× (∇×A) , (4)
1
2
v2 − h− Ve − Dtϕ− sDtψ = 0 , Dtψ + T = 0 , (5)
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c) (Lt[Ω])i ≡ ∂tΩ

i + vk∂kΩ
i − Ωk∂kv

i, and (L∗
t [A])i ≡ ∂tAi + vk∂kAi + Ak∂iv

k .



where h = ϵ+ p/ρ is the specific enthalpy, p the pressure, T the temperature, and standard relations of thermodynamics
are used.d) In regard to the terms Λϕ δϕ+ Λψ δψ, we must have Λϕ = 0 and Λψ = 0. These lead to

∂tρ+∇ · (ρv) = 0 , ∂ts+ v · ∇s = Dts = 0 . (6)

Thus, we obtain the equation of continuity and the entropy equation. From ΛΩ = 0 and ΛA = 0, we obtain

L∗
t [A] = 0 , ∂tΩ∗ +∇× (Ω∗ × v) = 0 , Ω∗ = ρΩ . (7)

It is seen that the vector potential Ω satisfies the equation of frozen field, and the Lie derivative of A vanishes.
Thus, we have obtained the results (4), (5), (6) and (7) from the variational principle. In particular, the third term

w of the velocity (4) is new. It can be shown that the set of equations (4), (5), (6) and (7) satisfy the Euler’s equation of
motion. In fact, applying the derivative Dt(= ∂t + v · ∇) to v of (4), we have

Dt[v] = Dt∇ϕ+ Dt(s∇ψ) + Dtw = ∇(Dtϕ− 1
2
v2 − sT ) + T ∇s,

where the second of (5), (6) and (7) are used. Finally, this reduces to the Euler’s equation of motion owing to (5):
Dtv = −∇h + T ∇s = −(1/ρ)∇p, since dh = (1/ρ) dp + T ds by the thermodynamics. Thus it is found that the
present Eulerian variation has lead to the correct result.

NEW ASPECTS OF THE PRESENT FORMULATION

In particular, the present solution is new in the following two aspects at least.
(i) A new aspect of the present expression becomes clear if we neglect the third term w of velocity (4) derived from the
new term ⟨L∗

t [A], Ω⟩ of the Lagrangian density (2). In this case, the velocity is given by v0 = ∇ϕ + s∇ψ. Taking its
curl, the vorticity is given by ω0 = ∇×v0 = ∇s×∇ψ. Then the helicity is given as follows (where ∇·ω0 = 0 is used),

H =

∫
v0 · ω0 d3x =

∫
(∇ϕ+ s∇ψ) · (∇s×∇ψ)d3x =

∫
(∇ϕ) · ω0 d3x =

∫
∇ ·

(
ϕω0

)
d3x = 0,

if ω0 = 0 at large distances, or if |ϕω0| = O(|x|−3−α) (with a positive parameter α) as |x| → ∞. Furthermore, if the
fluid is isentropic, i.e. s = s0 (constant), we have ω0 = 0. Namely the flow is irrotational without the term w.

However, in the present solution, we have curlw ̸= 0 in general. Therefore, it is rotational even in the isentropic
fluid. In addition, the helicity does not vanish in general.
(ii) According to (7), the potentials Ai (a cotangent vector) and Ωi (a tangent vector) of the present solution satisfy the
following equations,

∂tAi + (v · ∇)Ai = −Ak∂ivk, ∂tΩ
i + (v · ∇)Ωi = Ωk∂kv

i − Ωi ∂kv
k. (8)

These equations are essentially different in character from the equations of the Clebsch potentials. In fact, the Clebsch-
type solution is expressed by the following,

v = ∇ϕ+ s∇ψ +
∑
i

Bi∇Ci, 1
2
v2 + h+ ∂tϕ+ s∂tψ +

∑
i

Bi ∂tCi = 0,

∂tBi + (v · ∇)Bi = 0, ∂tCi + (v · ∇)Ci = 0, (i = 1, 2). (9)

and Dts = 0, Dtψ = 0 [2, 3]. It is not difficult to show that this Clebsch solution satisfies the Euler’s equation of
motion, too. Comparing the two equations (8) and (9) for potentials, it is obvious that the right hand sides are different. In
particular, the right hand sides vanish in the two equations of (9). Namely, the potentialsBi andCi of the Clebsch solution
are simply convected by the flow without change, while the tangent vector Ωi of the present solution are frozen to the flow
and stretched by the fluid motion. The cotangent vector Ai is also frozen to the flow by the constraint of vanishing Lie
derivative L∗

t [A] = 0 by (7).

CONCLUSIONS

An improvement of variational formulation is proposed for rotational flows of an ideal compressible fluid by introducing
a new gauge-invariant term in Λ. The system of new expressions derived from the principle of least action satisfies the
Euler’s equation of motion. Therefore we have obtained a new expression of solution to the Euler’s equation of motion.
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d) (∂ϵ/∂ρ)s = p/ρ2, (∂/∂ρ)s(ρ ϵ) = ϵ+ρ (∂ϵ/∂ρ)s = ϵ+p/ρ = h, and (∂ϵ/∂s)ρ = T . Then we have dϵ = (p/ρ2) dρ+T ds and dh = (1/ρ) dp+T ds.


